If it's not what You are looking for type in the equation solver your own equation and let us solve it.
4.905t^2+5t-15=0
a = 4.905; b = 5; c = -15;
Δ = b2-4ac
Δ = 52-4·4.905·(-15)
Δ = 319.3
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{319.3}}{2*4.905}=\frac{-5-\sqrt{319.3}}{9.81} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{319.3}}{2*4.905}=\frac{-5+\sqrt{319.3}}{9.81} $
| 2y=8×+1 | | 3/5p+8-1/5p=0 | | 5b=-14 | | 12m+8+6=8m-16-14 | | -42=6(x-6 | | 6y-3=y-1 | | 10n-0.3=0.1n-0.3 | | 4x+(48/x)=80 | | 5a-1=a | | 1/4x+6.5=10.5 | | 4(f-4)=2f-26 | | 4(2a-3)=2(a+3) | | 108=12k/18+4 | | (7+3i)(7+3i)=58 | | X+(x+26)+(x/3)=180 | | n2+9=14 | | 4(2x+5)-2(x-3)=50 | | X+8=-13x | | 2y-49+12=3y+15 | | 7/6b=2/15 | | 2z-9=14-4z | | -2z-12=-36 | | -7(y+6)=-10y-45 | | 1.08^-n=0.395 | | 5x+3x=35+x | | 17/x=8-x | | 12p+18=30 | | 13^-n=5 | | 13^n=5 | | 5(3y-7)=8(6y+8) | | 3a-10=107 | | -2z+12=-36 |